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Abstract
Continuum phase field theory is applied to study elastic twinning in calcite
and sapphire single crystals subjected to indentation loading by wedge-shaped
indenters. An order parameter is associated with the magnitude of stress-free
twinning shear. Geometrically linear and nonlinear theories are implemented
and compared, the latter incorporating neo-Hookean elasticity. Equilibrium
configurations of deformed and twinned crystals are attained numerically
via direct energy minimization. Results are in qualitative agreement with
experimental observations: a long thin twin forms asymmetrically under one
side of the indenter, the tip of the twin is sharp and the length of the twin increases
with increasing load. Qualitatively similar results are obtained using isotropic
and anisotropic elastic constants, though the difference between isotropic and
anisotropic results is greater in sapphire than in calcite. Similar results are
also obtained for nanometer-scale specimens and millimeter-scale specimens.
Indentation forces are greater in the nonlinear model than the linear model
because of the increasing tangent bulk modulus with increasing pressure in the
former. Normalized relationships between twin length and indentation force
are similar for linear and nonlinear theories at both nanometer and millimeter
scales. Twin morphologies are similar for linear and nonlinear theories for
indentation with a 90◦ wedge. However, in the nonlinear model, indentation
with a 120◦ wedge produces a lamellar twin structure between the indenter and
the long sharp primary twin. This complex microstructure is not predicted by
the linear theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Twinning is a fundamental deformation mechanism that occurs in many crystalline solids. In
this work, phase field theory is used to model deformation twinning, also known as mechanical
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twinning, which is defined as twinning induced by mechanical stresses [1–3]. Deformation
twinning is henceforth simply referred to as ‘twinning’. The transformation strain associated
with twinning is a simple shear. Across the habit plane, the orientation of the Bravais lattice
differs by a reflection or rotation depending on the kind of twin under consideration. The
sheared and reoriented crystal is labeled the ‘twin’, while the region of crystal that maintains its
original lattice orientation is labeled the ‘parent’ or the ‘matrix’. At the atomic scale, twinning
takes place by coordinated movement of partial dislocations (i.e. twinning dislocations) and/or
atomic shuffles [2]. A finite surface energy can be associated with the twin boundary, often
estimated on the order of the appropriate stacking fault energy [4]. The interfacial energy of a
growing or shrinking twin can also include elastic and core energies of twinning dislocations
comprising such interfaces, often labeled ‘incoherent interfaces’ [1]. Although exceptions
exist, deformation twinning is often a preferred deformation mechanism in crystals with low
stacking fault energy and/or low crystallographic symmetry [2].

Twinning in calcite (CaCO3) was extensively characterized via a number of experiments in
the mid-20th century [1, 5–11]. At room temperature, dislocation glide does not occur readily
in calcite, but twinning can occur profusely [10]. Thus, calcite is an ideal material for validation
of models of deformation twinning, since twin morphologies can be observed using optical
measurements (a benefit of calcite’s transparency), and since dislocation-mediated plasticity
need not be addressed.

A number of experimental studies of twinning in calcite considered indentation loading,
either with knife-edge indenters [5, 7, 9] or with spherical indenters [8]. Calcite crystals were
oriented such that the direction of twinning shear was parallel to the loading direction and
the habit plane normal was perpendicular to the loading direction. Twinning under such
conditions was often reported to be ‘elastic’, that is, twins under the indenter disappeared
fully or partially upon load removal [1, 5, 8, 11]. Twins originated at the contact surface and
were reported to be thin with a sharp tip or apex as shown in figure 1, with the length of
the twin increasing with increasing load. Twins could be maintained in a stable position (i.e.
held at a constant length) when the load was held fixed, with measured sizes reported on the
order of micrometers to hundreds of mm depending on the magnitude of applied load and
type of indenter geometry [1, 5, 8, 11]. When the calcite crystals exhibit no surface defects,
twins appear only after a threshold load is applied, whereas twins can appear immediately (i.e.
upon application of a minimal load) at surface imperfections when the crystals exhibit such
defects [8]. The title of this work is motivated by the transparency of calcite (and sapphire, as
discussed later) which enables direct optical observation of elastic twinning during indentation
loading. Appearance and disappearance of elastic twins cannot be visually observed within
opaque materials such as metals.

Previous analytical models have offered a partial description of physics of elastic twinning
under concentrated loading but cannot be categorized as fully predictive in terms of twin
morphology or elastic fields. Lifshitz [12]—see summary of model in English language
in [1]—incorporated a nonlinear elastic law (with non-convex energy density) and showed
that a two-dimensional twin of finite thickness should terminate within the material at a corner
point with zero aperture angle, i.e. a sharp cusp. This theory [1, 12] does not incorporate
dislocation mechanics or any quantitative value of interfacial energy and does not enable
prediction of the size of the twin, but it does give qualitative information regarding the twin’s
equilibrium shape.

A different theory developed by Kosevich and colleagues [1, 9, 11] assumes a priori that
the twin is long and thin and can be modeled as a one-dimensional continuum elasticity
problem. This theory considers, for equilibrium, a balance of forces of linear elastic origin,
Peierls forces [13] associated with lattice friction, and surface tension forces that resist the
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Figure 1. Wedge-shaped twin in calcite, after Kosevich and Boiko [1]. Twin appears only under
left side of indenter because shear deformation under right side is directed in anti-twinning sense.

formation of stacking faults in the region of extension of the twin (i.e. at the tip). Linear elastic
forces are assumed to arise from a continuous distribution of twinning (partial) dislocations
comprising the interface. The thickness of a one-dimensional twin at a point is related to the
dislocation density distribution. Phenomenological parameters in this theory can be prescribed
so that the analytical solution matches experimental measurements of twin length and applied
indentation force [1, 9, 11], but the theory cannot be regarded as fully predictive because such
parameters are not obtained from independent measurements.

Crystal plasticity-type models have also been developed to describe twinning. In such
models, the volume or mass fraction of a given material element occupied by twins belonging
to one or more twin systems is treated as an internal state variable that evolves with
thermomechanical loading via a kinetic law. Transformation kinetics are typically controlled
by driving stress and/or temperature. These models are useful for describing texture evolution
[14, 15] and macroscopic stress–strain behavior [3, 16–18]. A crystal mechanics approach has
also been used to predict subgrain twin morphology in 3D polycrystal simulations [19].

In this paper, a phase field theory for twinning developed recently by the authors [20] is
used. In any given simulation, twinning is restricted to occur on only one twin system. An order
parameter gauges the magnitude twinning shear on this system at any location in the problem
domain. The general form of the model in [20] accounts for large deformations, nonlinear
and anisotropic mechanical elastic properties, and anisotropic surface energy associated with
twin boundaries. Equilibrium configurations of deformed and twinned crystals are attained
via direct energy minimization. The theory is framed in the null temperature (i.e. 0 K) limit,
with no account of dissipation or irreversibility. Model assumptions of static equilibrium
and null dissipation are deemed particularly appropriate for a study of ‘elastic’ twinning in
indented calcite. Apart from the geometry of the twin system (shearing plane, direction and
magnitude) known a priori from the crystal structure, the only material properties entering the
present phase field model are the elastic constants which are known from experiments [21],
and the twin boundary energy and characteristic thickness, which are known from atomic
calculations [22]. Hence, the model is deemed fully predictive because morphologies and
elastic fields associated with twinning do not result from any a priori assumptions on twin
shape or kinetics of inelastic material behavior.

In phase field modeling, interfaces between pure phases—in the present case between
twinned and untwinned regions of crystal—possess a finite thickness. Boundary value
problems incorporating diffuse interface theory are amenable to treatment with modern
numerical methods [23, 24]. In contrast, sharp interface models that address equilibrium or
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stability among phases of nonlinear elastic materials (including deformation twins) have been
examined extensively using analytical methods [25–29], and less so with numerical techniques.

In addition to calcite, sapphire is also considered. Sapphire is the single crystal form of
α-alumina (Al2O3), and is alternatively referred to in various literature as corundum. High-
purity sapphire, like calcite, is transparent. Results for sapphire provide a useful basis for
comparison with those for calcite. Sapphire is notably stiffer (much higher hardness and
elastic constants) than calcite. Calcite and sapphire belong to the same crystallographic space
group; both are trigonal. Twinning in sapphire can occur on either of two twin systems (on basal
or rhombohedral planes) [16, 18, 30, 31]; both twin systems are considered individually in this
work. Dislocation plasticity (i.e. plastic slip) can accompany twinning in sapphire subjected to
indentation loading [32–34], since critical resolved shear stresses required to induce twinning
and slip are of the same order of magnitude [16, 18]. Because the model and results presented
here do not consider plastic slip, they represent idealized behavior. The present model would
require substantial changes to address kinematics and kinetics of dislocation distributions and
plastic slip [3, 16–18, 35], with corresponding dissipation.

Reported first in this paper are predictions for linear elastic behavior. In the present
phase field model [20], when elastic strains are small, the difference in driving shear stress for
twinning is a factor on the order of twinning shear. Previous theoretical studies of homogeneous
twin nucleation [2, 36, 37] have relied on linear elasticity, presumably because analytical
solutions are not feasible for nonlinear models. The geometrically linear model considered
in this work enables direct comparison with analytical solutions of wedge indentation in
elastic and elastic–plastic materials [38–40]. Geometrically linear theory has also been applied
elsewhere towards phase field modeling of twinning [41].

Reported second in this paper are model predictions for a finite strain model incorporating
nonlinear elastic behavior. Results from nonlinear and linear theories are also compared
directly. Linear theory can provide qualitative insight and in some cases quantitatively
reasonable descriptions of phase transformations and twinning behavior [29]. However, in
other cases, linear and nonlinear models can yield drastically different results with regards to
both analytical/theoretical predictions [29] and numerical predictions of phase field models
[42]. Results reported in this paper demonstrate qualitative agreement between linear and
nonlinear models for some phenomena, but significant differences for others. The theory
and results presented here incorporate a neo-Hookean model [43, 44] for nonlinear elastic
behavior, thus presuming an isotropic elastic response. Such an assumption is thought justified
since differences in predictions among isotropic and anisotropic linear elastic models are not
drastic, with qualitatively similar twin sizes and shapes obtained for isotropic and anisotropic
elasticity.

The rest of this paper is organized as follows. The phase field theory is summarized in
section 2, applicable to any generic crystalline material undergoing the same deformation
mechanisms. Properties of calcite and sapphire are addressed in section 3. Numerical
application of the linear theory to indentation is discussed in section 4; application of the
nonlinear theory in section 5. Conclusions follow in section 6.

Notation of continuum mechanics is used. Familiarity of the reader with elasticity theory
and phase field modeling is assumed; overviews of the latter include [23, 24]. Vectors
and higher-order tensors are written in bold italic font; scalars and components of vectors
and tensors are written in italic font. When indicial notation is used, summation proceeds
over repeated indices. Vectors and tensors are referred to a fixed Cartesian frame of
reference, with indices in the subscript position. The scalar product of vectors a and b

is a · b = aAbA = a1b1 + a2b2 + a3b3 in three-dimensional space. The outer product is
(a ⊗ b)AB = aAbB . Juxtaposition implies summation over one set of adjacent indices,
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e.g., (AB)AB = AACBCB . The colon denotes summation over two sets of indices, e.g.,
A : B = AABBAB . A T superscript denotes the transpose, e.g., AT

AB = ABA.

2. Theory

A continuum phase field theory for twinning [20] is summarized. The theory for geometrically
linear kinematics is presented first, followed by the finite strain theory.

2.1. Linear theory

Let X ∈ � be a material point. The order parameter function is η(X, t), where t denotes time.
The order parameter distinguishes between two phases: (i) the original crystal (the parent) and
(ii) the twin. Interfaces between phases are twin boundaries. Order parameter η generally
exhibits the following values:

η(X, •) = 0∀X ∈ parent,

= 1∀X ∈ twin,

∈ (0, 1)∀X ∈ twin boundaries. (1)

In linear elasticity, kinematic field variables are displacement u and its gradient

β = ∇u, βAB = ∇BuA. (2)

The distortion is split additively as

β = βE + βη, (3)

where βE is the elastic distortion and βη is the stress-free distortion associated with the twinning
shear or twinning transformation:

βη = [ϕ(η)] γ0 s ⊗ m. (4)

The unit normal to the surface of composition (i.e. the habit plane) is m. The magnitude of
the twinning shear and the shear direction are γ0 and s, respectively. The following conditions
hold: m · m = s · s = 1 and s · m = 0.

Interpolation function ϕ relates twinning distortion and the order parameter [42]:

ϕ(η) = 3η2 − 2η3. (5)

Note that ϕ is a monotonically increasing function obeying ϕ(0) = 0, ϕ(1) = 1, with vanishing
derivatives with respect to η at its endpoints: ϕ′(0) = ϕ′(1) = 0. This function also obeys the
anti-symmetry conditions ϕ(1 − η) = 1 − ϕ(η). The symmetric elastic strain tensor is

εE(∇u, η) = 1
2

{
βE + βET

}

= 1
2

{∇u + (∇u)T − γ0[ϕ(η)][s ⊗ m + m ⊗ s]
}
. (6)

The total free energy functional for a body of volume � is written as

�(u, η) =
∫

�

W(∇u, η) d� +
∫

�

f (η, ∇η) d�, (7)

where W is the elastic strain energy density and f accounts for interfacial energy. Strain
energy density and second-order elastic moduli are

W = W [εE(∇u, η), η] = 1
2εE

ABCABCD(η)εE
CD, (8)

CABCD(η) = ∂2W

∂εE
AB∂εE

CD

∣∣∣∣∣
εE=0

. (9)

5
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For a centrosymmetric structure, a re-orientation matrix Q associated with twinning is the
reflection [2, 3]

Q = 1 − 2m ⊗ m, (10)

with 1 the unit tensor. Elastic coefficients of the fully twinned crystal are related to those of
the parent by

CABCD(1) = QAEQBF QCGQDHCEFGH (0). (11)

Elastic coefficients in interfacial regions are interpolated as

CABCD(η) = CABCD(0) + [CABCD(1) − CABCD(0)] ϕ(η). (12)

When isotropic elasticity is used, elastic coefficients are independent of orientation:

CABCD = λδABδCD + µ(δACδBD + δADδBC), (13)

with λ and µ the Lamé constant and shear modulus; hence in the isotropic case W does not
explicitly depend on η.

The local interfacial energy per unit volume is

f (η, ∇η) = f0(η) + κ(η) : (∇η ⊗ ∇η), (14)

with κ a symmetric second-order tensor. For anisotropic surface energy, κAB(η) = κAB(0) +
ζϕ(η)[κAB(1) − κAB(0)], where similarly to (12), κAB(1) = QACQBDκCD(0), and where
ζ ∈ [0, 1] is a scalar constant. Case ζ = 0 considered in previous work [20] implies that the
gradient contribution to interfacial energy is invariant with respect to η and hence the twinning
shear; condition ζ = 1 implies that the gradient contribution depends on the transformation
of the lattice (e.g. reflection) associated with twinning. Other models have included highly
anisotropic surface energy [41]. When interfacial energy is isotropic, κ = κ1 and

f (η, ∇η) = f0(η) + κ|∇η|2. (15)

Prescribed for f0 is a standard ‘double-well’ potential:

f0(η) = Aη2(1 − η)2, (16)

with A > 0. In the isotropic approximation A and κ are related to equilibrium energy per unit
area � and thickness l of an unstressed interface via [20]

κ = 3�l/4, A = 12�/l. (17)

In this work, both f0 and ∇η contribute to what is called interfacial energy (14). This label
follows the scheme denoted in (1): by the convention used here, values of η �= 0, 1 designate
‘interface’, so f = 0 wherever η = 0, 1. Other presentations may use different notation,
e.g. f0 has been labeled ‘deformation energy’ in another phase field model for twinning [41],
since a uniform value of the order parameter differing from zero or unity can result in a finite
energetic contribution. It is also noted that (15) with (16) constitute a simple assumption
regarding interfacial energy; more elaborate models accounting for additional physics (e.g.
more than two variants, anisotropic dislocation core and stacking fault contributions, or grain
boundary misorientation and cusps associated with low-energy boundaries) exist [41, 45–48].

The following variational equation is posited that will yield equilibrium equations and
boundary conditions:

δ� =
∮

∂�

t · δu dS +
∮

∂�

h δη dS, (18)

6
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where t is a mechanical traction vector per unit area, dS is a surface element of ∂� and h is a
scalar conjugate force to variations of the order parameter. Euler–Lagrange equations obtained
from (18) are [20]

∇ · ∂W

∂∇u

∣∣∣
η

= ∇ · σ = 0, f ′
0 − 2∇ · (κ∇η) +

∂W

∂η

∣∣∣
∇u

= 0, (19)

where σ is the symmetric stress tensor. Corresponding boundary conditions are

t = σn, h = 2κ : (∇η ⊗ n), (20)

where n is the unit outward normal to ∂�. The stress also obeys the usual linear elasticity
relationship

σAB = CABCD εE
CD. (21)

The second of equilibrium conditions (19) can be rewritten as

f ′
0 = 2∇A(κAB∇Bη) + ϕ′{τγ0 + ζ∇Aη∇Bη [κAB(0) − κAB(1)]

+ (1/2)εE
ABεE

CD [CABCD(0) − CABCD(1)]}, (22)

where the driving shear stress for twinning is

τ = σ : (s ⊗ m). (23)

For isotropic surface and elastic energies, with ϕ from (5) and f0 from (16), equilibrium
condition (22) becomes

3τγ0η(1 − η) = Aη(1 − 3η + 2η2) − κ∇2η. (24)

Both sides of (22) and (24) vanish in regions of uniform phase where η = 0 or η = 1.

2.2. Nonlinear theory

Equations (1), (5) and (14)–(17) also apply for the nonlinear theory. Spatial x and referential
X coordinates of a material particle are related by the motion

x = χ(X, t). (25)

The deformation gradient is

F = ∇χ, FaA = ∇Aχa, (26)

with ∇A = ∂/∂XA. The deformation gradient is decomposed multiplicatively as

F = F EF η, (27)

where F E = FF η−1 is the elastic deformation and F η[η(X, t)] represents the stress-free
twinning shear. For twinning on a single system, the following form applies:

F η = 1 + [ϕ(η)] γ0 s ⊗ m. (28)

The unit (identity) tensor is 1. The symmetric elastic deformation tensor is

CE = F ET
F E, CE

αβ = F E
aαF E

aβ . (29)

Twinning is isochoric:

J η = det F η = 1 + [ϕ(η)] γ0 s · m = 1. (30)

It follows that

J = det F = det F E det F η = J EJ η = J E =
√

det CE. (31)

7
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The total energy functional for a body of initial (i.e. undeformed) volume � is

�(χ, η) =
∫

�

W(F , η) d� +
∫

�

f (η, ∇η) d�, (32)

where W is the elastic strain energy density and f accounts for interfacial energy. For a
neo-Hookean material [44] , strain energy density

W = W [CE(F , η)] = λ

2
(trCE − 3) + ln J

(
λ

2
ln J − µ

)
. (33)

For a (deviatoric) simple shear deformation gradient, the response of a neo-Hookean material
is the same as that for a linear elastic material with the same shear modulus. On the other hand,
when large volume changes are involved, predictions of neo-Hookean and linear elastic models
can differ significantly. Specifically, as will be demonstrated later in section 3, a neo-Hookean
model can describe the usual increase in tangent bulk modulus with increasing compressive
pressure.

The following variational equation is posited that will yield equilibrium equations and
boundary conditions:

δ� =
∮

∂�

t · δχ dS +
∮

∂�

h δη dS, (34)

where t is a mechanical traction vector per unit reference area, dS is a surface element of
∂�, and h is a scalar conjugate force to variations of the order parameter. Application of the
divergence theorem, integration by parts, and localization of (34) lead to the Euler–Lagrange
equations [20]:

∇ · ∂W

∂F

∣∣∣
η

= ∇ · P = 0, f ′
0 − 2κ∇2η +

∂W

∂η

∣∣∣
F

= 0, (35)

with P the first Piola–Kirchhoff stress. Corresponding boundary conditions are

t = Pn, h = 2κ∇η · n, (36)

where n is the unit outward normal to ∂�.
The first Piola–Kirchhoff stress satisfies

P = ∂W

∂F

∣∣∣
η

= ∂W

∂CE
:

∂CE

∂F E
:

∂F E

∂F

∣∣∣
η

= F E�F η−T
. (37)

The following kinematic identities prove useful for neo-Hookean elasticity:

∂ ln J

∂CE
= 1

2
CE−1

,
∂CE−1

αχ

∂F E
bβ

= −F E−1
αb CE−1

βχ − F E−1
χbC

E−1
αβ . (38)

The symmetric elastic second Piola–Kirchhoff stress is obtained from (33) and (37) as

� = 2
∂W

∂CE
= µ1 + (λ ln J − µ)CE−1

. (39)

The second of equilibrium conditions (19) can be rewritten as

f ′
0 = 2κ∇2η + τγ0ϕ

′, (40)

where the driving shear stress for twinning is

τ = − 1

γ0ϕ′
∂W

∂η

∣∣∣
F

= − 1

γ0ϕ′
∂W

∂CE
:

∂CE(F , η)

∂η

∣∣∣
F

= � : [CE(s ⊗ m)F η−1]. (41)

Using (5), (16) and (41), equilibrium condition (40) can then be written as in (24).
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It can be shown [20], given certain boundary conditions, that a (meta)stable configuration
of a body undergoing twinning corresponds to a (local) minimizer of energy functional �

of (32). Thus the mathematical problem of interest whose solution is sought numerically, as
described later in sections 4 and 5, can be stated simply as

min
χ,η

�(χ, η). (42)

3. Materials

Relevant behaviors of calcite and sapphire are discussed; requisite material properties
associated with elasticity and twinning in each material are tabulated.

3.1. Calcite

Calcite is a stable low-temperature polymorph of calcium carbonate (CaCO3), and is an ionic
crystal with trigonal (i.e. rhombohedral) symmetry [49, 50]. Transparent single crystals are
also called iceland spar. Information regarding the primitive unit cell and requisite properties of
calcite are listed in table 1 with supporting references. Calcite belongs to space group R3̄c and
centrosymmetric point group 3̄m. The primitive rhombohedral unit cell is described by lattice
parameter a and bond angle α. The primitive cell contains ten atoms (two CaCO3 formula
units); several additional parameters are needed to fully describe the polyatomic structure
and can be found elsewhere [50]. Hexagonal crystallographic notation is sometimes used to
describe calcite [14, 36, 50], which exhibits four different kinds of twin systems [22]. For the
e+ system considered here, the shear is large: γ0 = 0.694. Miller indices shown in figure 1
for shearing direction and habit plane, 〈0 0 1〉{1 1 0}, correspond to the cleavage rhombohedral
pseudocell [51] rather than the primitive unit cell of the Bravais lattice.

Twin boundary surface energy is obtained from lattice statics (0 K) calculations conducted
elsewhere [22] using an empirical potential [52]. In most phase field simulations discussed
later, surface energy is assumed isotropic, following usual theoretical studies [36, 37], but in
one case anisotropy of the surface energy is considered. In a material coordinate system with
axes aligned parallel to twinning direction and habit plane normal (X1||m and X2||s), the
gradient coefficient entering (14) is written [20, 41] as

[κ] =
[
κ11 0
0 κ22

]
. (43)

In the isotropic case, κ11 = κ22 = κ . The anisotropic case considered later is κ22 = 4κ11 = 4κ ,
which would seem to favor boundaries extended parallel to the habit plane. Recall from (17)
that surface energy � ∝ κ1/2. The rationale for anisotropic surface energy is that twinning
dislocations at a moving portion of the boundary (i.e. an incoherent interface [1, 20, 41]) would
contribute core and elastic energies to the total surface energy of the interface. In contrast, the
fully formed (i.e. coherent) twin boundary surface would have less energy than such a moving
portion because it does not contain energy of dislocations, just stacking fault energy associated
with reflection of the lattice across the twin boundary. Anisotropic values considered here are
anticipated to cause the twin to elongate in the direction of s and shorten in the direction of
m, in order to decrease the contribution of κ22(∇2η)2 to the energy in (14). It is also assumed
that κ does not depend on η and hence ζ = 0 in (22).

Equilibrium thickness l over which atoms deviate from their ideal positions is chosen as
1 nm, corresponding to about five {1 1 0} planes. This value follows from atomic simulations
of twin boundaries in calcite [22], where it is reported that the relaxed crystal structure differs
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Table 1. Properties of calcite single crystals.

Parameter Value Definition Reference

a 6.201 lattice parameter (Å) [50]
α 48.3◦ rhombohedral angle [50]
γ0 0.694 shear for e+ twin [14, 36]
C11 165.4 (148.1) elastic constants 0 K (300 K) (GPa) [21]
C12 65.0(55.8)

C13 61.6(54.6)

C14 −22.8(−20.6)

C33 89.5(85.6)

C44 36.6(32.7)

λ 61.7(54.6) Lamé modulus 0 K (300 K) (GPa)
µ 40.2(36.7) shear modulus 0 K (300 K) (GPa)
K 88.5(79.1) bulk modulus 0 K (300 K) (GPa)

(73.5) [54]
K ′ 4.0 (∂K/∂p)p=0 [54]
� 183 twin boundary energy (mJ m−2) [22]
l 1.0 twin boundary thickness (nm) [22, 42]

from that of the bulk mainly over five atomic layers. The same characteristic thickness value
(1 nm) has also been used in phase field models of other crystalline materials [20, 42].

Voigt’s notation [3, 53] is used for elastic constants in table 1. In simulations discussed
later, both isotropic and anisotropic elasticity models are considered. In the former, Voigt-
averaged elastic constants [3, 4, 53] are used:

λ = 1
15 (C11 + 5C12 + 8C13 + C33 − 4C44), (44)

µ = 1
30 (7C11 − 5C12 − 4C13 + 2C33 + 12C44). (45)

Elastic anisotropy of calcite is significant: C33 ≈ 0.5C11, C14 ≈ −0.6C44 and C44 ≈ 0.7C66.
Recall also that for the trigonal crystal class of calcite, C22 = C11, C24 = −C14 and
2C66 = C11 − C12. In simulations that follow, elastic constants measured at 160 K [21]
are extrapolated to 0 K for use in idealized simulations of twinning at the nanoscale (indenter
size on the order of nm), in strict adherence to the theoretical model of section 2 and [20]
that does not consider dissipation or thermal phenomena. Zero temperature solutions are also
more amenable to comparison with predictions of lattice statics [22]. On the other hand, room
temperature elastic constants are used in later simulations of indentation at the laboratory scale
(indenter size on the order of mm).

To validate the use of a neo-Hookean model for calcite, the response of the material
under purely volumetric deformation, F = J 1/31, is computed and compared with the
linear elastic response and that for the Birch equation of state (EOS) [55], where the latter
incorporates the bulk modulus K and the pressure derivative of the bulk modulus K ′ measured
experimentally [54]. Specifically, Cauchy pressure p is computed for each elastic constitutive
model via

p = K(1 − J ) (linear elasticity), (46)

p = µ(J−1 − J−1/3) − λJ−1 ln J (neo-Hookean), (47)

p = 3K

2
J−7/3(1 − J−2/3)

[
1 +

3

4
(K ′ − 4)(J−2/3 − 1)

]
(Birch EOS). (48)

Results of the calculations for calcite are compared in figure 2(a). In each case, the pressure is
normalized by the same value of Voigt-averaged bulk modulus from table 1, KV = 79.1 GPa.
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Figure 2. Cauchy pressure (normalized by Voigt-averaged bulk modulus) versus volume for linear
and nonlinear elasticity models of (a) calcite and (b) sapphire.

Close agreement is observed between predictions from the neo-Hookean model to be used in
simulations and those from the Birch EOS that is fit to experimental data [54]. Note that the
response for each of the two nonlinear models is stiffer than that of linear elasticity at higher
pressures.

A polymorphic phase transition from trigonal to a monoclinic structure has been observed
in calcite deformed under hydrostatic compression at pressures on the order of 1.5 GPa [54, 56].
Evidence of such a phase transformation has not been reported for indentation experiments
on calcite [1, 5, 7–11]. However, it is plausible that such a transformation could occur, given
the high pressures that exist immediately beneath the indenter that can easily exceed the
transformation pressure. For a wedge indenter with a sharp tip, the analytical elastic solution
(linear elasticity, in the absence of twinning) suggests that the pressure immediately beneath
the tip of the wedge tends to infinity [38, 40]. The phase field theory and simulations described
in this work do not address the possibility of this phase transformation in calcite.

3.2. Sapphire

Sapphire is a stable low-temperature polymorph of alumina (Al2O3), and like calcite exhibits
trigonal symmetry [18, 30]. Sapphire is alternatively known as α-Al2O3 or corundum;
nominally colorless when pure, sapphire with trace amounts of secondary elements often
exhibits blue or red tints, with red corundum commonly called ruby. Information regarding
the primitive unit cell and requisite properties of sapphire are listed in table 2. Like calcite,
sapphire belongs to space group R3̄c and centrosymmetric point group 3̄m. The primitive cell
contains ten atoms (two Al2O3 formula units); several additional parameters are needed to fully
describe the polyatomic structure [30]. Hexagonal crystallographic notation is typically used
to describe sapphire [16, 18, 30], which exhibits two kinds of twin systems [16, 18, 30, 31].
The basal (B) system corresponds to 〈1 1̄ 0 0〉{0 0 0 1} in the structural unit cell [30], and the
shear is large: γ0 = 0.635. The rhombohedral (R) system corresponds to 〈1 1̄ 0 1̄〉{1 1̄ 0 2} in
the structural cell, and the shear is somewhat smaller: γ0 = 0.202.

Again, both isotropic and anisotropic elasticity models are considered. In the former,
Voigt-averaged elastic constants [53] are used. Elastic anisotropy of sapphire is mild:
C33 ≈ C11, C14 ≈ 0.16C44 and C44 ≈ 0.9C66. In the simulations that follow, temperature
dependence of elastic coefficients where available [57] is used to provide 0 K constants for
use at the nanoscale; room temperature constants [58] are used in simulations of indentation
at the laboratory (mm) scale. Following [3, 4, 16, 18], surface energies of twin boundaries are
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Table 2. Properties of sapphire single crystals.

Parameter Value Definition Reference

a 5.12 lattice parameter (Å) [30]
α 55.3◦ rhombohedral angle [30]
γ0 0.635 shear for basal (B) twin [30]

0.202 shear for rhombohedral (R) twin [31]
C11 500.0 (498.0) elastic constants 0K (300K) (GPa) [57, 58]
C12 167.8 (163.0)

C13 120.5 (117.0)

C14 23.7 (23.0)

C33 502.0 (502.0)

C44 151.0 (147.0)

λ 146.7 (144.2) Lamé modulus 0 K (300 K) (GPa)
µ 166.5 (165.7) shear modulus 0 K (300 K) (GPa)
K 257.7 (254.7) bulk modulus 0 K (300 K) (GPa)

(254.4) [61]
(239.0) [62]

K ′ 4.3 (∂K/∂p)p=0 [61]
0.9 [62]

� 745 B twin boundary energy (mJ m−2) [60]
125 R twin boundary energy (mJ m−2) [59]

l 1.0 twin boundary thickness (nm) [63, 42]

estimated as half of corresponding stacking fault energies, the latter determined experimentally
[59] or through atomic modeling [60].

Use of a neo-Hookean model for sapphire is validated for volumetric compression
deformation in figure 2(b), where pressures are computed as in section 3.1. Pressures obtained
from the neo-Hookean model are intermediate to those from the Birch EOS fitted to two
different sets of hydrostatic compression experiments [61, 62]. The Birch EOS with K and K ′

from [62] gives predictions very similar to a linear elastic model incorporating Voigt-averaged
bulk modulus KV = 254.7 GPa.

Although inconclusive evidence exists from shock compression experiments [64], sapphire
may undergo a solid–solid phase transformation at pressures in excess of 79 GPa. Evidence
of such a transformation has not been reported in indentation experiments involving twinning
[32–34], though it is conceivable for such high pressures to be achieved for very sharp indenters.
The possibility of such a high-pressure phase transformation in sapphire is omitted in the present
phase field simulations.

4. Phase field simulations: linear theory

Simulations of wedge indentation into calcite and sapphire using the linear theory of section 2.1
are described. Numerical results are analyzed.

4.1. Boundary value problem

The problem of study is illustrated in figure 3. Simulations are two-dimensional (plane strain).
A rigid, wedge-shaped indenter of angle φ is pressed to a depth δ into a calcite or sapphire
substrate of nominal dimensions 50 nm ×75 nm. The indenter is rounded at the tip to alleviate
extreme deformation that would occur with a perfectly sharp indenter; the analytical elastic
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Figure 3. Wedge indentation.

solution (no twinning) for frictionless contact [38–40] indicates that the pressure immediately
under the indenter tip would be infinite for a perfectly sharp indenter. Wedge angles of φ = 90◦

and φ = 120◦ are considered. The shear strain under the indenter is γ ≈ tan(90◦−φ/2), about
1 for the 90◦ wedge and about 0.58 for the 120◦ wedge. The substrate is rigidly bonded to the
indenter along the line of contact. It is noted that this boundary condition is an idealization; in
a real experiment, some slip would be expected to occur between indenter and substrate. For
ductile materials and unlubricated indenters, a stick condition as considered here may be more
appropriate than sliding/frictionless contact [40, 65]. The finite element software used for
the simulations reported here does not presently include the capability to address multi-body
contact or friction interactions. If and when such capabilities are added in the future, effects
of friction coefficient on indentation can be studied.

Free boundary conditions (i.e. t = 0 and h = 0) are applied along the remainder of the
top surface not in contact with the wedge. Recall from (20) that h is the force conjugate
to variations in the order parameter; h = 0 is the logical boundary condition for a surface
free of thermodynamic force associated with the phase field, just as t = 0 is the logical
condition for a surface free of mechanical force associated with displacements. These free
boundary conditions permit the order parameter and displacement to vary along the surface
as an outcome of the solution. Condition h = 0 is also applied along the interface between
indenter and substrate, which permits formation of a twin at the surface immediately beneath
the indenter, as observed in experiments [1] (figure 1). Fixed boundary conditions (i.e. u = 0
andη = 0 on ∂�) are applied along the left, right and bottom sides of the substrate. Prescription
of alternative conditions h = 0 along left, right and bottom sides did not affect the solution.
The lattice orientation of the substrate in each case is such that the direction of twinning shear
is parallel to the direction of indentation loading.

A initial displacement field u2 is applied to material beneath the indenter to prevent element
overlap or inversion during initial conjugate gradient iterations. A defect (η = 1) of small
size (radius ∼ 5 Å) underneath the indenter is typically assigned as an initial condition. When
no initial defect is prescribed, twin(s) do not always nucleate in the numerical simulations.
Mathematically, this phenomenon is understandable from examination of (22) and (24), which
can be satisfied when η = 0 everywhere, even though the total energy of a system with a twin
(i.e. with η > 0 somewhere in �) may be less than that in which no twinning occurs. In other
words, condition η = 0 everywhere may correspond to a metastable solution. The phenomenon
is also physically realistic: Garber and Stepina [8] found that twins nucleated immediately with
negligible loads when surface defects were present, but required much greater indentation force
to nucleate when surface defects were absent.

The numerical solution technique incorporates finite element discretization and conjugate
gradient energy minimization [20]. Solutions of weak forms of equilibrium equations in
section 2 are obtained, with order parameter η and displacement u the nodal degrees of
freedom. For the boundary conditions prescribed here, equilibrium solutions corresponds
to minima of energy functional � as in (42).
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Table 3. Phase field simulations (linear).

Case Material Twin CABCD κAB φ Scale

1 CaCO3 e+ Isotropic Isotropic 90◦ Nanoscale
2 CaCO3 e+ Isotropic Isotropic 120◦ Nanoscale
3 CaCO3 e+ Isotropic Anisotropic 90◦ Nanoscale
4 Al2O3 B Isotropic Isotropic 90◦ Nanoscale
5 Al2O3 R Isotropic Isotropic 90◦ Nanoscale
6 CaCO3 e+ Isotropic Isotropic 90◦ Lab scale
7 Al2O3 B Isotropic Isotropic 90◦ Lab scale
8 Al2O3 R Isotropic Isotropic 90◦ Lab scale
9 CaCO3 e+ Anisotropic Isotropic 90◦ Nanoscale
10 Al2O3 B Anisotropic Isotropic 90◦ Nanoscale
11 Al2O3 B Anisotropic Isotropic 90◦ Lab scale

Linear (i.e. three node) triangular finite elements are used, with significant mesh refinement
underneath the indenter. Element size in such regions is ∼1 Å, sufficient for resolution of
gradients in order parameter at twin-parent interfaces by 10+ finite elements. Results of interest
are insensitive to further increases in mesh density. Indentation depth δ is varied nominally
from 0.25 nm to 4.75 nm in increments of 0.5 nm. For each increment, initial conditions are
re-applied, and then the conjugate gradient algorithm is used to determine equilibrium order
parameter and elastic fields.

Absolute indentation force P is computed by summing vertical nodal forces contributing
to t2 along the contact line. Absolute length L of the twin is determined by the X2 coordinate
at the tip demarcated by the local condition η > 0.1. In most cases, increasing the thickness of
the substrate above 75 nm results in very little change to P or L; any exceptions are discussed
later in the context of the corresponding results.

Simulations discussed in sections 4.2 and 4.3 focus on nanometer-scale twins, i.e.
nucleation phenomena. Length scales involved are in agreement with previous studies of twin
nucleation [2, 20, 36, 37]. Twins modeled by Kosevich and colleagues using one-dimensional
theories [1, 9, 11] are idealized with minimum thickness on the order of the interplanar spacing
(<1 nm), and hence also describe nanoscopic phenomena, though the length of twins studied
in such analytical models may be orders of magnitude larger. Using the present phase field
approach, much larger (i.e. laboratory scale, dimensions of mm) twins can also modeled by
careful scaling of the size of the indenter and substrate, the mesh density and the gradient
energy parameter κ , such that the finite element mesh is able to resolve the thickness of twin
boundary interfaces. This effort to model laboratory scale as opposed to nanoscale twins is
described in section 4.4.

Table 3 lists simulations discussed in forthcoming parts of section 4. Solutions obtained
using isotropic elasticity are grouped into cases 1–8 because these will be analyzed together
later. Cases 9–11 consider anisotropic elasticity.

4.2. Isotropic elasticity

Contours of order parameter fields for cases 1, 2, 4 and 5 are shown in figure 4. The normalized
indentation depth is � = 4.75 for all cases in figure 4. Normalized (dimensionless) depth,
normalized indentation force per unit out-of-plane length, and normalized twin length are
defined, respectively, as

� = δ

l
, � = P

Êl
, � = L

l
. (49)
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Figure 4. Order parameter η field for isotropic elastic solutions at the nanoscale at indentation
depth � = 4.75: (a) case 1: calcite, e+ twin, 90◦ wedge. (b) Case 2: calcite, e+ twin, 120◦ wedge.
(c) Case 4: sapphire, B twin, 90◦ wedge. (d) Case 5: sapphire, R twin, 90◦ wedge.

Effective Young’s modulus Ê, Young’s modulus E and Poisson’s ratio ν are

Ê = E

1 − ν2
, E = µ(3λ + 2µ)

λ + µ
, ν = λ

2(λ + µ)
. (50)

The definition of Ê is motivated by the analytical linear elastic solution (with no twinning
and frictionless contact) [38–40], wherein the mean contact pressure between indenter and
substrate is pm = Ê cot(φ/2).
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Figure 5. Normalized indentation force versus indentation depth (a) and normalized twin length
versus force (b) for isotropic elastic constants.

In each case, a primary twin forms under the left side of the indenter, where the driving
shear stress for twinning τ of (23) is positive in sign. Directly under the right side of the wedge,
τ is negative in sign, since the shear strain is directed in the anti-twinning sense with respect to
the orientation of the twin system. The sharp tip predicted for e+ twinning in calcite agrees with
observations from indentation experiments conducted from the 1930s to the 1970s [1, 5, 8, 11].
Long, lenticular-shaped micro-twins in indentation of sapphire have been reported [32]. The
predicted sharp tip also verifies that described by the early analytical solution of Lifshitz [12].

Also noteworthy are the secondary twins that form at the edge of the indenter (right side)
where the shear deformation is directed in the twinning (as opposed to anti-twinning) sense.
This phenomenon is reminiscent of the appearance of twins near the outer edge of spherical
indenters reported by Garber and Stepina [8].

Comparing figure 4(a) with figure 4(b), a longer twin is produced in calcite, for the same
�, when an indenter with larger wedge angle is used. Comparing figure 4(c) with figure 4(d),
for the same �, a rhombohedral (R) twin is significantly longer than a corresponding basal
(B) twin in sapphire. Recall from table 2 that the shear γ0 for B twinning is larger than that
for R twinning (0.635 versus 0.202) as is the surface energy � (745 versus 125 mJ m−2). The
twinning shear for calcite is 0.694 (table 1). Comparing figure 4(a) with figures 4(c) and (d),
for the same � and wedge angle, e+ twins in calcite and B twins in sapphire are much closer in
length and appearance than are R twins in sapphire. It is suggested that larger/longer R twins
are required to achieve comparable relaxation in elastic strain energy than B twins because of
the smaller stress-free shear γ0 in the former.

Another interesting feature in figure 4(b) is the thin boundary layer at the surface of contact
under the left side of the wedge where η < 1. This layer appears because the imposed shear
strain directly under the 120◦ indenter is about 0.58, which is less than the transformation
shear 0.694 for calcite. On the other hand, for indentation by 90◦ wedges, the imposed shear
strain is about 1, which is greater than γ0, and hence complete transformation with η = 1 is
energetically favorable along the contact boundaries under the left sides of the 90◦ wedges.

Indentation force versus depth is shown in figure 5(a) for cases 1–8, along with force
versus depth for pure elastic solutions (i.e. no twinning). Results for no twinning are obtained
for 90◦ wedges. Twinning induces a significant reduction in force relative to pure elasticity.
Use of a 120◦ wedge (case 2) rather than a 90◦ wedge produces a larger force because of the
former’s larger contact area. In figure 5(a), force-versus-depth data for 90◦ wedge indentation
with twinning collapse to nearly the same curve when normalized to dimensionless form by
the appropriate quantities via (49).
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Twin length versus indentation force is shown in figure 5(b). In all cases, twin
length increases monotonically with increasing force or with increasing depth of indentation.
Behavior is similar for e+ twining in calcite and B twinning in sapphire. On the other hand, R
twins in sapphire are significantly longer under the same normalized force. It was found that
for twin lengths � � 50, interaction with the rigid lower boundary ∂� of the domain does not
affect the twin length (recall η = 0 is imposed on X2 = 0). For the R twin, the two data points
corresponding to the largest values of � indicate some influence of the lower boundary, which
tends to repel and hence shorten the twin. Perhaps most noteworthy from figure 5(b), for e+

twinning in calcite and B twinning in sapphire, twin length versus force for wedge indentation
reduce to nearly the same curve when normalized via (49).

It was remarked in section 3.1 that the choice of anisotropic surface energy in (43) might
facilitate more elongated or sharper twins, as was observed for the problem of homogeneous
twin nucleation in previous work [20]. Comparing cases 1 and 3, use of anisotropic surface
energy in (43) with energy per unit area differing by a factor of ≈2 in directions parallel
and perpendicular to the habit plane results in negligible differences in force and length, and
contours of η are also negligible between cases 1 and 3 (not shown). Thus, the present
results suggest that anisotropic surface energy does not significantly affect predicted twin
morphology during wedge indentation, at least for the materials and ranges of physical
parameters considered here.

4.3. Anisotropic elasticity

Contours of order parameter η are compared for anisotropic and isotropic elastic constants
in figure 6. Shown are results for 90◦ wedges at an indentation depth of � = 4.75.
Qualitatively, with regards to twin shape, predictions of anisotropic and isotropic models
agree. Use of anisotropic elasticity produces a somewhat shorter e+ twin in calcite than does
the corresponding isotropic model (figures 6(a) and (b)). Use of anisotropic elasticity produces
a slightly longer B twin in sapphire than does the corresponding isotropic model (figures 6(c)
and (d)). Recall from section 3 that elastic anisotropy (in terms of ratios of elastic constants) is
significantly greater in calcite than sapphire; however, relative influences of anisotropy on the
indentation solutions might also be influenced by other factors such as differences in twinning
shear γ0 and different surface energies prescribed for the two materials.

Normalized indentation force versus indentation depth for 90◦ wedge indentation is shown
in figure 7(a) for e+ twinning in calcite and B twinning in sapphire. All curves except that for
anisotropic calcite coincide; the indentation force tends to be lower in the latter. Normalized
twin length versus indentation force are shown in figure 7(b), again for e+ twinning in calcite
and B twinning in sapphire. All results collapse to nearly the same monotonically increasing
(and nearly linear) relationship.

4.4. Scaling to laboratory dimensions

Modeling twin nucleation and growth at dimensions of millimeters or larger, i.e. at laboratory
scales corresponding to traditional indentation experiments [1, 5, 8, 11], is not feasible without
proper scaling of the interfacial thickness. Resolution of an interface of thickness l of 1 nm,
as considered in nanoscale simulations discussed in sections 4.2 and 4.3, requires a numerical
discretization with finite elements of size on the order of 1 Å; discretization of a domain of 1 cm2

would require ∼1016 such elements, for example. In phase field calculations, the pragmatic
idea of treating the interface as having an adjustable or scalable thickness has been used
often for modeling larger systems [23, 24]. Following such an approach, here the equilibrium
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Figure 6. Order parameter η field for isotropic and anisotropic elastic solutions at the nanoscale
at indentation depth � = 4.75 with 90◦ wedge: (a) case 1: calcite, e+ twin, isotropic elasticity.
(b) Case 9: calcite, e+ twin, anisotropic elasticity. (c) Case 2: sapphire, B twin, isotropic elasticity.
(d) Case 10: sapphire, B twin, anisotropic elasticity.

interfacial thickness is scaled to l = 1 mm, an increase by a factor of 106 above the value of
1 nm used in sections 4.2 and 4.3. In other words, in the scaled model, the equilibrium width
of the twin boundary is ≈1 mm. Recall that 1 nm corresponds to a distance over which atoms
deviate from their ideal positions in atomic simulations of twin boundaries [22].

To achieve the desired scaling l → �l, values of constants in (17) are adjusted as

κ → �
2κ, A → A, (51)
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Figure 7. Normalized indentation force versus indentation depth (a) and normalized twin length
versus force (b) for e+ twins in calcite and B twins in sapphire.

where in this particular case, � = 106. The transformation in (51) preserves the ratio of
interfacial energy to strain energy on a per-unit-volume basis; W of (8) and f0 of (16) are
unchanged:

W → W, f0 → f0. (52)

The gradient contribution to interfacial energy per unit volume f in (15) is also unchanged
since

∇ → ∇/�, κ|∇η|2 → (�2κ)|(∇η/�)|2 = κ|∇η|2. (53)

In laboratory (millimeter) scale simulations discussed next, room temperature (as opposed to
0 K) elastic constants are used, to better mimic ambient test conditions.

Representative results are compared in contour plots of η in figure 8. In figure 8(a),
nanoscale results are shown, and absolute substrate dimensions are 50 nm × 75 nm. In
figure 8(b), laboratory scale results with parameters modified via (51) are shown, and
dimensions are 50 mm × 75 mm. Close similarity between cases 1 and 6 in figures 8(a) and
(b) (calcite, e+ twin, isotropic elasticity) demonstrates the ability of the scaling to produce self-
similar results for linear elasticity. Differences in twin length between figures 8(a) and (b) are a
consequence of the increase in compliance of the elastic constants at room temperature relative
to 0 K. As shown in figure 5, data for indentation force versus depth and twin length versus
indentation force are nearly identical when normalized to dimensionless form. For example,
compare results for cases 1 and 6 (calcite) and cases 4 and 7 (sapphire, B twin). Close similarity
between cases 10 and 11 (sapphire, B twin, anisotropic elasticity) demonstrates the ability of
the scaling procedure to produce self-similar results for anisotropic elasticity.

Limitations of the above scaling method should be noted. Per unit volume, the ratio of
interfacial energy to strain energy is maintained by the scaling procedure: both W and f

entering (7) are unchanged by the scaling. This explains why solutions obtained by energy
minimization appear nearly identical in figure 8: the same problem (with different units) is
essentially solved in each case. However, per unit area, energy associated with the interface is
increased by a factor of �. Interfacial energy per unit volume is energy per unit area divided
by thickness. Because interfacial thickness is increased by a substantial factor (i.e. �), small
features cannot be resolved in absolute dimensions.

The present model predictions would benefit from quantitative comparisons with
experiments. Such comparisons are presently inhibited by limitations in reporting of
experimental geometry and data. Regarding the former, it is typically stated that a ‘knife edge’,
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Figure 8. Order parameter η field for solutions at nanometer and millimeter scales at indentation
depth � = 4.75 with 90◦ wedge: (a) case 1: calcite, e+ twin, isotropic elasticity, l = 1 nm.
(b) Case 6: calcite, e+ twin, isotropic elasticity, l = 1 mm.

‘chisel’, or ‘wedge’ is used to produce an elastic twin in calcite, but the wedge angle (i.e. φ

of figure 3) is not reported [1, 9, 7, 11]. Results of measurements of force versus twin length
are given only implicitly as parameters entering dislocation models [9, 11]; raw force versus
length data enabling comparison with the present predictions are apparently unpublished.
Data are available for spherical indentation of calcite [6]; however twinning under spherical
indentation requires 3D modeling outside the scope of this work. New experiments studying
effects of wedge angles as reported in detail for other elastic and plastic materials [39] would be
useful. It is reiterated that predictions reported here do agree qualitatively with experimental
observations: a long thin twin forms under one side of the indenter, the twin tip is sharp, and
the twin length increases with increasing applied load.

5. Phase field simulations: nonlinear theory

Simulations of indentation using the nonlinear theory of section 2.2 are described; numerical
results are analyzed and compared with those from the linear theory.

5.1. Boundary value problem

The same indentation boundary value problems described in section 4 are considered here in the
context of the finite strain model of section 2.2. The numerical solution technique incorporates
procedures nearly identical to those discussed in section 4.1. Solutions of weak forms of the
equilibrium equations in section 2.2 are obtained, with order parameter η and displacement
u = χ − X the nodal degrees of freedom. For the boundary conditions prescribed here, the
equilibrium solution corresponds to a minima of energy functional � as in (42). In a few
exceptional cases involving large indentation depths in sapphire, converged solutions could
not be obtained for all increments; in those cases, solution data shown in subsequent figures is
necessarily limited to that available from converged solutions. For simulations incorporating
the geometrically nonlinear neo-Hookean model, it was found that accelerated convergence
towards equilibrium solutions could often be obtained by using the corresponding linear elastic
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Table 4. Phase field simulations (nonlinear and linear).

Case Material Twin Model φ Scale

1 CaCO3 e+ Nonlinear 90◦ Nanoscale
2 CaCO3 e+ Linear 90◦ Nanoscale
3 Al2O3 B Nonlinear 90◦ Nanoscale
4 Al2O3 B Linear 90◦ Nanoscale
5 Al2O3 R Nonlinear 90◦ Nanoscale
6 Al2O3 R Linear 90◦ Nanoscale
7 CaCO3 e+ Nonlinear 120◦ Nanoscale
8 CaCO3 e+ Linear 120◦ Nanoscale
9 Al2O3 B Nonlinear 90◦ Lab scale
10 Al2O3 B Linear 90◦ Lab scale

phase field solutions reported in section 4 as an initial guess. This initialization procedure was
used to obtain many of the nonlinear phase field solutions discussed later involving relatively
large indentation depths. It was found that the same final equilibrium solution was obtained
using this initialization method or the initial conditions described in section 4.1.

Simulations discussed in sections 5.2 and 5.3 focus on nanometer-scale twins, i.e.
nucleation phenomena, arising from indenters with respective wedge angles of φ = 90◦ and
φ = 120◦. Length scales involved (i.e. tens of nm) are similar to those of prior analytical and
computational studies of twin nucleation [2, 20, 36, 37]. Results of modeling laboratory scale
as opposed to nanoscale twins are presented in section 5.4.

Table 4 lists simulations discussed in section 5. Calcite (e+ twin system) and sapphire
(B and R twin systems) are modeled. Odd-numbered simulation cases incorporate the
geometrically nonlinear phase field model with neo-Hookean elasticity of section 2.2. Even-
numbered cases incorporate the geometrically linear, linear elastic phase field model of
section 2.1. For a given nonlinear solution, the linear solution for the same material and
boundary conditions corresponds to the subsequent case number in table 4.

5.2. Nano-indentation with 90◦ wedge

Contours of order parameter and shear stress fields in calcite for simulation cases 1 (nonlinear
theory) and 2 (linear theory) are shown in figure 9. The normalized indentation depth is
� = 4.75. Normalized (dimensionless) depth, normalized indentation force and normalized
twin length are defined, respectively, as in (49).

For each case in figure 9, a primary twin forms under the left side of the indenter, where the
driving shear stress for twinning τ of (41) is positive in sign. Under the right side of the wedge,
τ is negative in sign, since the shear strain is directed in the anti-twinning sense with respect
to the orientation of the twin system. A secondary twin arises at the edge of the indenter at the
free surface (right side) where the shear deformation is directed in the twinning (as opposed
to anti-twinning) sense.

For purposes of comparison, contour legends for the order parameter in these and
subsequent figures are restricted to η ∈ [0, 1]. Occasionally, values of η slightly exceeded unity
at one or a few nodes immediately under the indenter. The current numerical implementation of
the phase field model places no hard bounds on η; values η < 0 are set to 0 in (5), while values
η > 1 are set to 1 in (5). Thus, values outside the range [0,1] offer no advantage with regards
to minimization of elastic strain energy, and are penalized in the double-well potential (16).

Comparing figure 9(a) with figure 9(b), order parameter contours and twin lengths are
similar for nonlinear and linear models in this instance. One minor difference arises: in the
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Figure 9. Close-up contours of order parameter and shear stress for nano-indentation with 90◦
wedge at depth � = 4.75: (a) η, case 1: calcite, e+ twin, nonlinear theory. (b) η, Case 2: calcite,
e+ twin, linear theory. (c) P12/µ, Case 1: calcite, e+ twin, nonlinear theory. (d) P12/µ, Case 2:
calcite, e+ twin, linear theory.

nonlinear solution (figure 9(a)), a thin layer of twinned material (η ≈ 1) emerges under the
right side of the indenter, near the tip. Such a layer is absent in the linear solution of figure 9(b).
Shear stress contours in figures 9(c) and (d) differ substantially for nonlinear and linear models.
The shear stress is more severe, and more strongly concentrated under the tip of the indenter,
for the nonlinear model (figure 9(c)) than the linear model (figure 9(d)). Maximum shear
stresses can be large, with local magnitudes exceeding the shear modulus for results of the
nonlinear theory.
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Figure 10. Order parameter η field for nano-indentation of sapphire to depth of � = 3.75 with 90◦
wedge: (a) Case 5: sapphire, R twin, nonlinear theory (b) Case 6: sapphire, R twin, linear theory.

Contours of order parameter fields for indentation of sapphire, cases 5 (nonlinear, R twin)
and 6 (linear, R twin) are shown in figure 10. Order parameter contours and twin lengths
are similar for nonlinear and linear models. In the nonlinear solution, a thin layer of twinned
material (η ≈ 1) again emerges under the right side of the indenter, near the tip, while such a
layer is absent in the corresponding linear solution.

For the same indentation depth �, a rhombohedral (R) twin is predicted to be significantly
longer than a corresponding basal (B) twin in sapphire. Recall from table 2 that the shear γ0

for B twinning is larger than that for R twinning (0.635 versus 0.202) as is the surface energy �

(745 versus 125 mJ m−2). Longer R twins may be required to achieve comparable relaxation in
elastic strain energy than B twins because of the smaller stress-free shear γ0 in the former. This
trend (R twins longer than B twins) was consistent among results of both linear and nonlinear
models.

Indentation force versus depth is shown in figure 11(a) for cases 1–6. Force versus
depth data for 90◦ wedge indentation, when normalized by the appropriate quantities via (49),
are similar for all cases at small indentation depths (� � 2.5). At larger indentation depths,
indentation forces for nonlinear models (cases 1, 3 and 5) exceed forces for corresponding linear
models (cases 2, 4 and 6). Such differences result, in part, from the increase in tangent stiffness
(e.g. bulk modulus) with increasing compressive pressure in the neo-Hookean elasticity model.
For e+ twinning in calcite and B twinning in sapphire, the indentation force in the nonlinear
model (case 1 or 3) only modestly exceeds that for the complementary linear model (case 2 or
4) at � � 2.5. The indentation force increases dramatically for case 5 (sapphire, R twin) at
larger indentation depths relative to the force for the corresponding linear model (case 6). Order
parameter (figure 10) and displacement fields demonstrate little differences among linear and
nonlinear solutions at large indentation depths, whereas local compressive stress magnitudes
become comparatively much larger for the nonlinear model. It is suggested that the increase in
force in the nonlinear model is a result of nonlinear elastic contributions to stress (especially
pressure) that become stronger at larger indentation depths and for larger R twins.

Twin length versus indentation force is shown in figure 11(b). In all cases, twin
length increases monotonically with increasing force or with increasing depth of indentation.
Behavior is quantitatively similar for e+ twining in calcite and B twinning in sapphire. R twins
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Figure 11. Normalized indentation force versus indentation depth (a) and normalized twin length
versus force (b) for cases 1–6.

in sapphire are significantly longer under the same normalized force. From figure 11(b), for
e+ twinning in calcite and B twinning in sapphire, twin length versus indentation force data
normalized by (49) reduce to similar curves.

5.3. Nano-indentation with 120◦ wedge

Contours of order parameter field η for cases 7 (calcite, nonlinear theory) and 8 (calcite, linear
theory) for indentation with a 120◦ wedge are shown in figure 12 for indentation depths of
� = 3.75 (figures 12(a) and (b)) and � = 4.75 (figure 12(c) and (d)). At each depth, the
absolute length of the long, thin primary twin is nearly identical for nonlinear and linear models.
The sharp tip predicted for e+ twinning in calcite agrees with observations from indentation
experiments [1, 5, 8, 11].

Predicted twin morphologies are strikingly different for nonlinear and linear models. For
the linear theory, a single continuous primary twin forms under the left side of the indenter. For
the nonlinear theory, a layered twin structure with alternating regions of large and small values
of η forms under the left side of the indenter. The number of horizontal layers increases with
increasing indentation depth: e.g. two horizontal layers are evident in figure 12(a) and three
arise in figure 12(c). Such layered structures were not reported in early experimental work on
indentation of calcite from the 1930s to the 1970s [1, 5, 8, 11]; however, such microstructures
may simply have not been detectable by the optical/photographic equipment available at
that time. Kaga and Gilman [10] observed layered (lamellar) structures in twinned calcite
specimens through etch pit studies. It was suggested that etch pit lines could be associated
with positions where a twin boundary interface temporarily rested during growth of a twin [10].
The alternating layers of twinned crystal under the indenter evident in the nonlinear results
in figure 12 are reminiscent of the finely twinned energy-minimizing structures in theories
of martensitic phase transformations [27, 29]. Because of the energetic penalty incurred by
boundary regions of η �= 0, 1 in the phase field theory, the layered structures that emerge in the
nonlinear theory must offer a substantial reduction in elastic strain energy relative to a solution
in which a single continuous primary twin forms, as in the linear theory.

Other phase field simulations incorporating geometrically linear, but possibly anisotropic,
elasticity have predicted layered structures of twin domains in the context of martensitic
transformations [46, 47]. An anisotropic linear elastic–plastic finite element study [66] showed
that local shear stress distributions favor formation of lenticular shaped twins, and that above a
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Figure 12. Order parameter η field for nano-indentation with 120◦ wedge: (a) case 7: calcite, e+

twin, � = 3.75, nonlinear theory. (b) Case 8: calcite, e+ twin, � = 3.75, linear theory. (c) Case 7:
calcite, e+ twin, � = 4.75, nonlinear theory. (d) Case 8: calcite, e+ twin, � = 4.75, linear theory.

threshold twinned volume fraction, formation of a layered microstructure consisting of multiple
twins is energetically favorable to formation of a single large twin. Reported finite element
calculations did not account for surface energy, which was noted would become important for
very small twins in the nucleation stage [66]. None of these other works addressed indentation
loading.

In all cases shown in figure 12, a thin boundary layer arises at the surface of contact under
the left side of the wedge, where η < 1. This layer appears because the imposed shear strain
directly under the 120◦ indenter is about 0.58, which is less than the transformation shear
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Figure 13. Close-up contours of order parameter and shear stress for nano-indentation with 120◦
wedge at depth � = 4.75: (a) η, case 7: calcite, e+ twin, nonlinear theory. (b) η, Case 8: calcite,
e+ twin, linear theory. (c) P12/µ, Case 7: calcite, e+ twin, nonlinear theory. (d) P12/µ, Case 8:
calcite, e+ twin, linear theory.

0.694 for calcite. On the other hand, for indentation by 90◦ wedges discussed in section 5.2
(figure 9), the imposed shear strain is about 1, which is greater than γ0, and hence complete
transformation with η = 1 is energetically favorable along the contact boundaries under the
left sides of 90◦ wedges. Because the layered twin structure of the nonlinear theory does
not emerge in simulations of indentation by 90◦ wedges, the appearance of such layers for
indentation by 120◦ wedges (imposed shear of 0.58 < γ0 = 0.694) could be explained by
similar arguments.

Close-up views of order parameter η and shear stress component P12 are shown in figure 13
for cases 7 and 8. Shear stress contours in figures 13(c) and (d) differ substantially for nonlinear
and linear models. As was observed in figure 9, the shear stress is more severe, and more
strongly concentrated under the tip of the indenter, for the nonlinear model (figure 13(c)) than
the linear model (figure 13(d)). Alternating layers of shear stress that accompany the lamellar
twin structure predicted by the nonlinear theory are just visible in figure 13(c).

Indentation force versus depth is shown in figure 14(a) for cases 7–10. Twin length versus
indentation force is shown in figure 14(b). Results for cases 7 and 8 are discussed here; cases
9 and 10 are discussed in section 5.4. Force-versus-depth data for 120◦ wedge indentation,
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Figure 14. Normalized indentation force versus indentation depth (a) and normalized twin length
versus force (b) for cases 3, 4 and 7–10.

when normalized by (49), are almost identical for linear and nonlinear models. Indentation
force and twin length predicted by nonlinear theory exceed corresponding values predicted by
linear theory by less than 1%. Twin length increases monotonically with increasing force or
with increasing depth of indentation.

5.4. Scaling to laboratory dimensions

For scaling according to the transformation l → �l, values of constants in (17) are adjusted
as in (51) of section 4.4. Again, for the present problem, � = 106, scaling the interface
thickness from 1 nm to 1 mm. In laboratory (millimeter) scale simulations discussed next,
room temperature (as opposed to 0 K) elastic constants are used, to better represent ambient
experimental conditions [1, 5, 8, 11].

Representative results are compared for nonlinear and linear theories in contour plots of
η in figure 15, corresponding to basal twins in sapphire induced by 90◦ wedge indentation.
Figures 15(a) and (b) can be compared with nanoscale results in figures 6(c) and (d), though
the indentation depth is slightly smaller in the former. In figures 6(c) and (d), nanoscale results
are shown, and the absolute substrate dimensions are 50 nm × 75 nm. In figures 15(a) and
(b), laboratory scale results with parameters scaled via (51) are shown, and the dimensions
are 50 mm × 75 mm. Note that twin morphologies are similar for model predictions at each
length scale. Linear and nonlinear theories also predict similar order parameter profiles in
figure 15. Similar to what was observed in figure 9(a), only in the nonlinear solution does
a thin layer of twinned material (η ≈ 1) emerge under the right side of the indenter near
the tip.

Indentation force versus depth is shown in figure 14(a); twin length versus indentation
force is shown in figure 14(b). Force-versus-depth data for 90◦ wedge indentation of sapphire
with B twins, when normalized by the appropriate quantities via (49), is quantitatively very
similar for linear and nonlinear models at both the nanoscale and laboratory scale (cases 3, 4,
9, and 10). Normalized twin length data for linear and nonlinear models at each length scale
also collapse to nearly the same monotonically increasing curve, as demonstrated by the nearly
indistinguishable results for sapphire in figure 14(b). Close similarity among results for cases
3 and 9 in figure 14 demonstrates the ability of the scaling method of section 4.4 to produce
geometrically self-similar results for nm- and mm-sized specimens using the nonlinear theory.

27



Modelling Simul. Mater. Sci. Eng. 19 (2011) 085005 J D Clayton and J Knap

Figure 15. Order parameter η field for laboratory (mm) scale indentation with 90◦ wedge at depth
� = 4.25: (a) case 9: sapphire, B twin, nonlinear theory. (b) Case 10: sapphire, B twin, linear
theory.

6. Conclusions

A phase field model for twinning in elastic crystals has been developed and exercised for the
problem of indentation with wedges. Two transparent materials have been studied: calcite and
sapphire. Predictions of nonlinear (i.e. finite strain) theory have been compared with those of
geometrically linear theory.

Phase field predictions of indentation agree qualitatively with experimental observations: a
long thin twin forms asymmetrically beneath one side of the indenter, the tip of the twin is sharp
and the length of the twin increases with increasing force. Normalized, dimensionless variables
for indentation depth, indentation force, and twin length have been derived. It is emphasized
that physically realistic twin shapes are predicted by a model whose only parameters are the
elastic constants, twin boundary energy, and twin boundary thickness, all of which can be
obtained from independent experiments or quantum/molecular mechanics calculations.

Qualitatively similar twin shapes have been obtained using isotropic and anisotropic elastic
constants. The difference in predicted twin length between isotropic and anisotropic models is
greater in sapphire than in calcite. Basal and rhombohedral twins have been studied in sapphire:
predicted rhombohedral twins are longer than basal twins for the same indentation force. Use
of anisotropic rather than isotropic surface energy has little effect on twin morphology or
indentation force for the particular indentation boundary conditions and ranges of material
parameters considered here.

A scaling method has been developed for modeling behavior of specimens of (mm-to-
cm) sizes on the order of those studied experimentally in traditional indentation, as opposed
to nano-indentation. Nearly identical twin morphologies are obtained for nanometer-scale
specimens and millimeter (lab) scale specimens. Twin length versus indentation force data,
when properly normalized to dimensionless form, collapse to nearly the same monotonically
increasing curve for e+ twins in calcite and basal twins in sapphire, for nm- and mm-scale
simulations, and for 90◦ and 120◦ wedges.

Indentation forces are greater in the nonlinear model than the linear model because of
the decreasing elastic compliance with increasing pressure in nonlinear model. Normalized
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relationships between twin length and indentation force are similar for linear and nonlinear
theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and
nonlinear theories for indentation with 90◦ wedges: in each case, a single, continuous primary
twin forms under one side of the indenter, and a small secondary twin forms at the free surface
at the opposite edge. Perhaps most interestingly, in the nonlinear model, indentation of calcite
with a 120◦ wedge produces a lamellar twin structure between the indenter and the long sharp
primary twin. The number of twin lamellae increases with increasing indentation depth. This
complex, layered microstructure is not predicted by the linear theory, which instead predicts a
single continuous primary twin.
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